Fall 2006

Gateway General Chemistry 125/126/130 Exam 3 December 5, 2006 (8:00-10:00pm)

Name_____

Section (circle one): 601 (Colin) 602 (Brannon) 603 (Mali) 604 (Xiaomu)

The exam has at total of 8 pages including the cover and a periodic table both of which you may remove. You do not need to turn the periodic table in with your exam. Please neatly show all of your work and apply significant figure rules.

Page	Questions	Possible points	Score
2	1-5	5	
3	3 6-8		
4	4 8		
5	9-11	8	
6	12-13	9	
7	14-15	6	

Total

/50

Q1-5 (1 point each) Please place the one correct letter in the box

- 1) The value of K_c for the reaction $A \Rightarrow B$ is 2.21 at 25°C. At equilibrium
 - a. [A] = [B]
 - b. $[A] = [B]^2$
 - c. [A] < [B]
 - d. [A] > [B]
 - e. Need more information to determine relative concentrations.
- 2) To decide whether a reaction mixture is at equilibium, a student determines the value of Q, the reaction quotient, and finds that it is less than K. Therefore, the mixture is
 - a. at equilibrium, since there is as much reaction as required.
 - b. not at equilibrium, and will react to the right, to increase the amounts of products.
 - c. not at equilibrium, and will react to the left, to increase the amounts of reactants.
 - d. not at equilibrium, and will react to the right, to increase the amounts of reactants.
 - e. not at equilibrium, and will react to the left, to increase the amounts of products.
- 3) What volume of 0.1060 M NaOH is needed to neutralize a 50.00 mL sample of 0.0950 M HNO₃?
 - a. 55.79 mL b. 55.19 mL
 - c. 50.00 mL
 - d. 44.81 mL
 - e. 5.19 mL

4) A buffer solution may result if K3PO4 is mixed with

- a. HCl.
- b. К<u>2</u>НРО4.
- c. NaOH.
- d. either HCl or K₂HPO₄.
- e. either K₂HPO₄ or NaOH
- 5) The equilibrium constant for the reaction

 $NO(g) + 1/2 O_2(g) \Rightarrow NO_2(g)$

has a value of $K_c = 1.23$ at a certain temperature. What is the value of K_c for the reaction

$$2 \operatorname{NO}_2(g) \rightleftharpoons 2 \operatorname{NO}(g) + \operatorname{O}_2(g)$$
?

- a. 2.46 b. 1.51
- c. 0.66
- d. 0.41
- e. -1.51

 $2)\mathbf{B}$

3) D	

6) (6 points) Given the equilibrium:

 $H_2O(g) + C(s) \Rightarrow CO(g) + H_2(g) \quad \Delta H > 0 ; K_{eq} < 1$

What happens to the concentration of water $[H_2O_{(g)}]$ when the following stresses are placed on the system at equilibrium? (*Circle the correct description of the* $[H_2O_{(g)}]$ as a result of the stress described)

	[H ₂ O _(g)]			
a) Temperature is lowered	increases	decreases	stays the same	
b) C _(s) is added	increases	decreases	stays the same	
c) C _(s) is removed; but some C _(s) visible in reaction flask	increases	decreases	stays the same	
d) CO _(g) is added	increases	decreases	stays the same	
e) The volume of the container is doubled	increases	decreases	stays the same	
f) H_2 is removed	increases	decreases	stays the same	

7) (5 points) Suppose that you constructed an iodine thermometer by placing 1 g of $I_{2(s)}$ in a 1L glass ball at 10.0°C.

a) On the graph of concentration vs. time, sketch the concentration of $I_{2(g)}$ as the system is allowed to come to equilibrium. Then, add any change in concentration expected when the ball is warmed to 20° C and a new equilibrium is established.

b) Sketch the rate of reaction $I_{2(g)} \rightarrow I_{2(s)}$ as the system initially comes to equilibrium at 10°C and then after the temperature has been raised to 20°C.

The equilibrium constants for the reaction are: $K_c (10.0^{\circ}C) = 4.1 \times 10^{-6}$; $K_c (20.0^{\circ}C) = 9.9 \times 10^{-6}$.

8) (11 points) 0.46 moles of cyanic acid (HOCN) is added to 1 L of water.

a) (2 points) Write out the chemical equilibrium that occurs. Identify the acid, base, conjugate acid, and conjugate base. HOCN_(aq) + $H_2O_{(1)} \leftrightarrow H_3O^+_{(aq)}$ + $OCN_{(aq)}$ Acid base conj acid conj base

b) (1 point) Write out the expression for K_a:

$$K_a = [\underline{OCN}][\underline{H_3}\underline{O^{\pm}}]$$
[HOCN]

c) (3 points) Given that $K_a = 3.5 \times 10^{-4}$, find the concentrations of the three aqueous species at equilibrium.

equilibrium.				
HOCN \leftrightarrow H ₃ O ⁺	⁻ OCN	$3.5 \times 10^{-4} = x^2$		
I 0.46M 0	0	0.46		
C -x +x	$+\mathbf{X}$	$1.269 \text{ x} 10^{-2} = \text{x} (2.76\% \text{ c})$	of 0.46 assumption valid)	
E 0.46-x x	X	By quadratic $x = 1.25 x1$	0^{-2}	,
			•	
HOCN = 0.5 M		$H_3O^+ = 1 \times 10^{-2}$	$^{-}OCN = 1 \times 10^{-2}$	

d) (*1 point*) What is the pH of the solution? $pH = -log[H_3O^+] = ;log[1.3x10^{-2}] = 1.88 = 2$

e) (4 points) A 0.50 M solution of NaOCN is prepared. Find the pH of this solution. $OCN_{(aq)} + H_2O_{(l)} \leftrightarrow HOCN_{(aq)} + OH^ K_a * K_b = 1 \times 10^{-14}$ \leftrightarrow HOCN ⁻OCN OH- $K_b = 1x10^{-14}/3.5x10^{-4} = 2.8x10^{-11}$ 0.50M 0 0 $K_b = [HOCN][OH^{\pm}]$ C +x $+\mathbf{X}$ -X $[^{-}OCN]$ 2.8x10⁻¹¹ = <u>x</u>² E 0.50-x x X 0.50 $2.86 \times 10^{-6} = x = [OH^{-1}]$ $pOH = -log[OH^{-}] = -log[2.86 \times 10^{-6}] = 5.42$ pH = 14-pOH = 8.6

9) (*3 points*)

<u>) (5 point</u>							
	Each of the compounds on the left are						
	dissolved in water. Circle the approximate						
	pH of the resulting solution						
NaHSO ₄	pH <7 pH~7 pH >7						
NaF	pH <7 pH~7 pH >7						
HNO ₂	pH <7 pH ~7 pH >7						
Ca(CN) ₂	pH <7 pH~7 pH >7						
KBr	pH <7 pH~7 pH >7						
HIO ₃	pH <7 pH~7 pH >7						

10) (4 points) Identify the following molecules as acids, bases, neither, or both. Circle any acidic protons and box in the sites of proton acceptors

11) (1 point) Name one of the two indicators you used in lab while working with acids and bases: Phenolphthalein OR bromocresol green

. .

12) (5 points) Consider these reactions:

$$AgCl_{(s)} \leftrightarrow Ag^{+}_{(aq)} + Cl^{-}_{(aq)} \qquad K_{c} = 1.8 \times 10^{-10}$$

$$AuCl_{(s)} \leftrightarrow Au^{+}_{(aq)} + Cl^{-}_{(aq)} \qquad K_{c} = 1.8 \times 10^{-12}$$

, 	+	~	solubility of			
A	\mathbf{g}^{T}	Cl				
I 0		0				
C +	X	+x				
E x		X				
$K_c = 1$	1.8x1	0 ⁻¹⁰	$= [Ag^+][Cl^-]$ M = x = solut	$= x^2$		
1	.3 x	10^{-5}]	M = x = solut	oility		
				5		

b) W	/hat is	s the so	lubility of AuCl in a 0.1 M solution of Cl ⁻²
I	Au^+	Cl	
Ι ()	0.1	
C +	+x	$+_{\mathbf{X}}$	
E y		0.1+x	
$K_c =$	1.8x1	$10^{-12} = 10^{-12}$	$[Au^+] [Cl^-] = [x][0.1+x]$
1	l.8x1($0^{-12} = x^{3}$	* 0.1
1	l.8x10	0^{-11} M =	= x solubility = $2x10^{-11}$ M
$ \begin{array}{c} I \\ C \\ E \\ K_c = \\ 1 \end{array} $	Au ⁺) +x 1.8x1 1.8x1	Cl ⁻ 0.1 +x 0.1+x	$[Au^+] [Cl^-] = [x][0.1+x]$ * 0.1

13) (4 *points*) Explain why the solubilities of PbCO₃ and Pb₃(PO₄)₂ (and phosphates and carbonates in general) are increased in water by lowering the pH, but the solubility of PbCl₂ (and chlorides in general) in water are unaffected by lowering the pH. Write out any chemical equilibria that are relevant to your answer.

$\begin{array}{rcl} PbCO_{3(s)} \leftrightarrow Pb^{+2}{}_{(aq)} + CO_{3}^{-2}{}_{(aq)} \\ Pb_{3}(PO_{4})_{2(s)} \leftrightarrow 3Pb^{+2}{}_{(aq)} + 2PO_{4}^{-3}{}_{(aq)} \end{array}$	$\begin{array}{rcl} & CO_3^{-2}{}_{(aq)} + H_2O_{(l)} \leftrightarrow HCO_3^{-}{}_{(aq)} + OH^{-}{}_{(aq)} \\ & PO_4^{-3}{}_{(aq)} + H_2O_{(l)} \leftrightarrow HPO_4^{-2}{}_{(aq)} + OH^{-}{}_{(aq)} \end{array}$
$PbCl_{2(s)} \leftrightarrow Pb^{+2}_{(aq)} + 2Cl_{(aq)}$	

Both carbonate and phosphate are bases as shown in the equilibria on the right. (They react with water, accepting a proton to form hydroxide). Lowering the pH, adds H_3O^+ which reacts with OH^- (to form water) and shifts the equilibria on the right towards the right, consuming carbonate or phosphate which shifts the solubility equilibria on the left leading to a higher solubility of phosphate and carbonate salts. Chloride does not act as a base and therefore the solubility of chloride salts is not affected by the pH.

14) (6 points) The Henderson Hasslebach equation is: $pH = pK_a + log ([A^-]/[HA])$. A buffer made for use with a fluoride ion selective probe is made from acetic acid (CH₃COOH) and potassium acetate (CH₃COOK). The buffer needs to have total molarity of 1.0 M (including both acetic acid and potassium acetate) and have a pH of 5.22. The Ka of acetic acid is 1.8 x10⁻⁵.

a) (3 points) What are the initial concentrations of acetic acid and potassium acetate in the buffer? $[A^-] + [HA] = 1 M$ $pH = pK_a + log[A^-] x + y = 1$ [HA] y = 1 - x $5.22 = -log(1.8 x10^{-5}) + log[x]$ [1-x] 5.22 = 4.74 + log[x/(1-x)] 0.48 = log[x/(1-x)] 3.02 = x/(1-x) 3.02 = 4.02 x; 0.75 = x $[CH_3COOH] = 0.25$ $[CH_3COOK] = 0.75$

b) (1 point) If you have a 5.0 M solution of acetic acid, how many milliliters of this solution would you use in order to prepare 1.0 L of the buffer? $5 M (V_1) = 0.25M (1 L)$ $V_1 = 0.05 L = 50 mL = 5.0 x 10^1 mL$

c) (*1 point*) How much potassium acetate would you weigh out in order to prepare 1.0 L of the buffer?

 $0.75 \text{ mol CH}_3\text{COOK} * (98 \text{ g CH}_3\text{COOK}) = 74.25 \text{ g} = 74 \text{ g CH}_3\text{COOK}$ $1 \text{ mol CH}_3\text{COOK}$

d) (*1 point*) Will the buffer have a higher buffering capacity for acid or for base? Please explain.

Acid; The buffer starts with more conjugate base (CH₃COO⁻).

2 He 4.00260 10 Ne	18 Ar 39.948	³⁶ 83.80	54 Xe 131.29	86 Rn (222)			
14.0067 15.9994 18.998403	17 CI 35.453	³⁵ Br 79.904	51 52 53 54 Sb Te I Xe 121.75 127.60 126.9045 131.29	85 At (210)		71 Lu 174.967	103 Lr (260)
15.9994	16 S 32.06	³⁴ Se ^{78.96}	52 Te 127.60	⁸⁴ PO (209)		70 Υb 173.04	102 NO (259)
7 14.0067	15 P 30.9376	³³ 3 ³⁴ As Se 74.9216 78.96	51 Sb 121.75	83 Bi 208.9804		⁶⁹ Tm 168.9342	101 Md (258)
6 C 12.011	13 14 15 16 Al Si P S 26.98154 28.0855 30.9376 32.06	32 Ge 72.59	₅₀ Sn ^{118.69}			68 Er 167.26	100 Fm (257)
10.81 ⁵	13 Al 26.98154	31 Ga 69.72	49 In 114.82	78 79 80 81 82 Pt Au Hg Tl Pb 195.08 196.9665 200.59 204.383 207.2		66 67 68 69 70 71 Dy Ho Er Tm Yb Lu 162.50 164.9304 167.26 168.9342 173.04 174.967	99 Es (252)
		³⁰ Zn ^{65.38}		80 Hg 200.59	112	⁶⁶ Dy ^{162.50}	98 Cf (251)
NTS		29 Cu 63.546	47 Ag 107.8682	79 Au 196.9665	111	Tb ⁶⁵ 158.9	97 Bk (247)
EME		²⁸ Ni ²⁸ 58.69	44 45 46 47 48 Ru Rh Pd Ag Cd 101.07 102.9055 106.42 107.8682 112.41	78 Pt 195.08	110	62 63 64 65 Sm Eu Gd Tb 150.36 151.96 158.9254 158.9	5 96 Cm (247)
ELI		²⁷ C0 58.9332	45 Rh 102.9055		109 Mt	63 Eu 151.96	95 Am (243)
THE		26 Fe 55.847	44 Bu 101.07	76 Os 190.2	108 Hs	⁶² Sm ^{150.36}	94 Pu (244)
Γ OF		24 25 26 27 Cr Mn Fe Co 51.996 54.9380 55.847 58.9332	(98) TC	75 Re 186.207	107 Bh	61 Pm (145)	93 Np 237.0842
HAR		Cr 51.996	42 Mo 95.94	74 W 183.85	106 Sg (263)		92 U 238.0289
PERIODIC CHART OF THE ELEMENTS		23 V 50.9415	41 Nb 92.9064	Hf Ta 178.49 180.9479	105 Db (262)	58 59 60 Ce Pr Nd 140.12 140.3077 144.24	91 Pa 231.0359
IOD		Δ ²² 1 47.88	40 Zr 91.22	72 Hf 178.49	104 Rf (261)	58 Ce 140.12	90 91 Th Pa 232.0381 231.0359
PER		²¹ Sc 44.9559	³⁹ ★ 88.9059	55 56 57 58-71 CS Ba La LANTH- 32:9054 137.33 138:9055 ANIDES	AC 90-103 AC ACTIN- 27.0278 IDES	LANTHANIDE SERIES	ACTANIDE SERIES
4 Be	12 Mg 24.305	Ca 40.08	38 Sr ^{87.62}	56 Ba 137.33 138	B8 89 Ra AC 226.0254 227.0278		
H 1.00794 Li 3 6.941 9	11 12 Na Mg 22.98977 24.305	¹⁹ K Ca 39.0983 40.08	³⁷ Rb ^{85.4678 8}	⁵⁵ CS 32.9054 11	⁸⁷ Fr (223) 22		
- N	ເ ເ	4	ى س	<u>۽</u> 0	~		