Gateway General Chemistry 125/126/130
Exam 3
December 5, 2006 (8:00-10:00pm)
Name \qquad
Section (circle one): 601 (Colin) 602 (Brannon) 603 (Mali) 604 (Xiaomu)
The exam has at total of 8 pages including the cover and a periodic table both of which you may remove. You do not need to turn the periodic table in with your exam. Please neatly show all of your work and apply significant figure rules.

Page	Questions	Possible points	Score
2	$1-5$	5	
3	$6-8$	11	
4	8	11	
5	$9-11$	8	
6	$12-13$	9	
7	$14-15$	6	

Total \qquad $/ 50$

Q1-5 (1 point each) Please place the one correct letter in the box

1) The value of K_{c} for the reaction $\quad \mathrm{A} \rightleftharpoons \mathrm{B}$ is 2.21 at $25^{\circ} \mathrm{C}$. At equilibrium
a. $[\mathrm{A}]=[\mathrm{B}]$
b. $[\mathrm{A}]=[\mathrm{B}]^{2}$
c. $[\mathrm{A}]<[\mathrm{B}]$
d. $[\mathrm{A}]>[\mathrm{B}]$

e. Need more information to determine relative concentrations.
2) To decide whether a reaction mixture is at equilibium, a student determines the value of Q, the reaction quotient, and finds that it is less than K . Therefore, the mixture is
a. at equilibrium, since there is as much reaction as required.
b. not at equilibrium, and will react to the right, to increase the amounts of products.
c. not at equilibrium, and will react to the left, to increase the amounts of reactants.
d. not at equilibrium, and will react to the right, to increase the amounts of reactants.
e. not at equilibrium, and will react to the left, to increase the amounts of products.
3) What volume of 0.1060 M NaOH is needed to neutralize a 50.00 mL sample of 0.0950 M HNO_{3} ?
a. 55.79 mL
b. 55.19 mL
c. 50.00 mL
d. 44.81 mL
e. 5.19 mL
4) D

5) D
a. HCl .
b. $\mathrm{K}_{2} \mathrm{HPO}_{4}$.
c. NaOH .
d. either HCl or $\mathrm{K}_{2} \mathrm{HPO}_{4}$.
e. either $\mathrm{K}_{2} \mathrm{HPO}_{4}$ or NaOH
6) The equilibrium constant for the reaction

$$
\mathrm{NO}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}_{2}(\mathrm{~g})
$$

has a value of $\mathrm{K}_{\mathrm{c}}=1.23$ at a certain temperature. What is the value of K_{c} for the reaction

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad ?
$$

a. 2.46
b. 1.51
c. 0.66
d. 0.41
e. -1.51
6) (6 points) Given the equilibrium:

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{C}(\mathrm{~s}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}>0 ; \mathrm{K}_{\mathrm{eq}}<1
$$

What happens to the concentration of water $\left[\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\right]$ when the following stresses are placed on the system at equilibrium? (Circle the correct description of the $\left[\mathrm{H}_{2} \mathrm{O}_{(g)}\right.$] as a result of the stress described)

| | | $\left[\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\right]$ |
| :--- | :--- | :--- | :--- |
| a) Temperature is lowered | increases | decreases stays the same |
| b) $\mathrm{C}_{(\mathrm{s})}$ is added | increases decreases stays the same | |
| c) $\mathrm{C}_{(\mathrm{s})}$ is removed; but some $\mathrm{C}_{(\mathrm{s})}$
 visible in reaction flask | increases decreases stays the same | |
| d) $\mathrm{CO}_{(\mathrm{g})}$ is added | increases | decreases stays the same |
| e) The volume of the container is | | |
| doubled | | |

7) (5 points) Suppose that you constructed an iodine thermometer by placing 1 g of $^{2} \mathrm{I}_{2(\mathrm{~s})}$ in a 1 L glass ball at $10.0^{\circ} \mathrm{C}$.
a) On the graph of concentration vs. time, sketch the concentration of $\mathrm{I}_{2(\mathrm{~g})}$ as the system is allowed to come to equilibrium. Then, add any change in concentration expected when the ball is warmed to $20^{\circ} \mathrm{C}$ and a new equilibrium is established.
b) Sketch the rate of reaction $\mathrm{I}_{2(\mathrm{~g})} \rightarrow \mathrm{I}_{2(\mathrm{~s})}$ as the system initially comes to equilibrium at $10^{\circ} \mathrm{C}$ and then after the temperature has been raised to $20^{\circ} \mathrm{C}$.

The equilibrium constants for the reaction are: $\mathrm{K}_{\mathrm{c}}\left(10.0^{\circ} \mathrm{C}\right)=4.1 \times 10^{-6} ; \mathrm{K}_{\mathrm{c}}\left(20.0^{\circ} \mathrm{C}\right)=9.9 \times 10^{-6}$.

8) (11 points) 0.46 moles of cyanic acid (HOCN) is added to 1 L of water.
a) (2 points) Write out the chemical equilibrium that occurs. Identify the acid, base, conjugate acid, and conjugate base.
$\underset{\text { Acid }}{\mathrm{HOCN}_{(\mathrm{aq)}}}+\underset{\text { base }}{\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}} \leftrightarrow \underset{\text { conj acid }}{\mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq)}}^{+}}+\underset{\text { conj base }}{\mathrm{OCN}_{(\mathrm{aq)}}}$
b) (1 point) Write out the expression for K_{a} :

$$
\mathrm{K}_{\mathrm{a}}=\frac{[=\mathrm{OCN}]\left[\mathrm{H}_{3} \mathrm{O}^{ \pm}\right]}{[\mathrm{HOCN}]}
$$

c) (3 points) Given that $\mathrm{K}_{\mathrm{a}}=3.5 \times 10^{-4}$, find the concentrations of the three aqueous species at equilibrium.

	HOCN	$\leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}$	OCN
I	0.46 M	0	0
C	-x	+x	+x
E	$0.46-\mathrm{x}$	x	x

$3.5 \times 10^{-4}=\frac{x^{2}}{0.46}$
$1.269 \times 10^{-2}=\mathrm{x}(2.76 \%$ of 0.46 , assumption valid) By quadratic $\mathrm{x}=1.25 \times 10^{-2}$

$\mathrm{HOCN}=0.5 \mathrm{M}$	$\mathrm{H}_{3} \mathrm{O}^{+}=1 \times 10^{-2}$	$\mathrm{OCN}=1 \times 10^{-2}$

d) (1 point) What is the pH of the solution?

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=; \log \left[1.3 \times 10^{-2}\right]=1.88=2
$$

e) (4 points) A 0.50 M solution of NaOCN is prepared. Find the pH of this solution.
${ }^{-} \mathrm{OCN}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \mathrm{HOCN}^{\prime}$

	-OCN	$\leftrightarrow \mathrm{HOCN}$	OH^{-}
I	0.50 M	0	0
C	-x	+x	+x
E	$0.50-\mathrm{x}$	x	x

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}} * \mathrm{~K}_{\mathrm{b}}=1 \times 10^{-14} \\
& \mathrm{~K}_{\mathrm{b}}=1 \times 10^{-14} / 3.5 \times 10^{-4}=2.8 \times 10^{-11} \\
& \mathrm{~K}_{\mathrm{b}}=\frac{[\mathrm{HOCN}]\left[\mathrm{OH}^{-}\right]}{[\mathrm{OCN}]} \\
& 2.8 \times 10^{-11}=\frac{\mathrm{x}^{2}}{0.50} \\
& 2.86 \times 10^{-6}=\mathrm{x}=\left[\mathrm{OH}^{-}\right] \\
& \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left[2.86 \times 10^{-6}\right]=5.42 \\
& \mathrm{pH}=14-\mathrm{pOH}=8.6
\end{aligned}
$$

9) (3 points)

	Each of the compounds on the left are dissolved in water. Circle the approximate pH of the resulting solution			
NaHSO_{4}	$\mathrm{pH}<7$	$\mathrm{pH} \sim 7$	$\mathrm{pH}>7$	
NaF	$\mathrm{pH}<7$	$\mathrm{pH} \sim 7$	$\mathrm{pH}>7$	
HNO_{2}	$\mathrm{pH}<7$	$\mathrm{pH} \sim 7$	$\mathrm{pH}>7$	
$\mathrm{Ca}(\mathrm{CN})_{2}$	$\mathrm{pH}<7$	$\mathrm{pH} \sim 7$	$\mathrm{pH}>7$	
KBr	$\mathrm{pH}<7$	$\mathrm{pH} \sim 7$	$\mathrm{pH}>7$	
HIO_{3}				

10) (4 points) Identify the following molecules as acids, bases, neither, or both. Circle any acidic protons and box in the sites of proton acceptors

11) (1 point) Name one of the two indicators you used in lab while working with acids and bases:
12) (5 points) Consider these reactions:

$$
\begin{array}{ll}
\mathrm{AgCl}_{(\mathrm{s})} \leftrightarrow \mathrm{Ag}_{(\mathrm{aq})}^{+}+\mathrm{Cl}_{(\mathrm{aq})}^{-} & \mathrm{K}_{\mathrm{c}}=1.8 \times 10^{-10} \\
\mathrm{AuCl}_{(\mathrm{s})} \leftrightarrow \mathrm{Au}_{(\mathrm{aq})}^{+}+\mathrm{Cl}_{(\mathrm{aq})}^{-} & \mathrm{K}_{\mathrm{c}}=1.8 \times 10^{-12}
\end{array}
$$

a) What is the solubility of AgCl in water?

	Ag^{+}	Cl^{-}	
I	0	0	
C	+x	+x	
E	x	x	

b) What is the solubility of AuCl in a 0.1 M solution of Cl^{-}?

13) (4 points) Explain why the solubilities of PbCO_{3} and $\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ (and phosphates and carbonates in general) are increased in water by lowering the pH , but the solubility of PbCl_{2} (and chlorides in general) in water are unaffected by lowering the pH . Write out any chemical equilibria that are relevant to your answer.

$$
\begin{aligned}
& \mathrm{PbCO}_{3(\mathrm{~s})} \leftrightarrow \mathrm{Pb}^{+2}{ }_{(\text {aq) }}+\mathrm{CO}_{3}^{-{ }^{-2}{ }_{(\text {aq })}} \quad \mathrm{CO}_{3}^{-{ }^{-2}}{ }_{(\mathrm{aq})}^{-3}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \mathrm{HCO}_{3}^{-}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{\text {(aq) }} \\
& \mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})} \leftrightarrow 3 \mathrm{~Pb}_{(\mathrm{aq})}^{+2}+2 \mathrm{PO}_{4}^{-3}{ }_{(\mathrm{aq})} \quad \mathrm{PO}_{4}^{-3}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \mathrm{HPO}_{4}^{-2}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-} \\
& \mathrm{PbCl}_{2(\mathrm{~s})} \leftrightarrow \mathrm{Pb}^{+2}{ }_{(\mathrm{aq})}+2 \mathrm{Cl}^{-}{ }_{(\mathrm{aq})}
\end{aligned}
$$

Both carbonate and phosphate are bases as shown in the equilibria on the right. (They react with water, accepting a proton to form hydroxide). Lowering the pH , adds $\mathrm{H}_{3} \mathrm{O}^{+}$which reacts with OH^{-}(to form water) and shifts the equilibria on the right towards the right, consuming carbonate or phosphate which shifts the solubility equilibria on the left leading to a higher solubility of phosphate and carbonate salts. Chloride does not act as a base and therefore the solubility of chloride salts is not affected by the pH .
14) (6 points) The Henderson Hasslebach equation is: $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right)$. A buffer made for use with a fluoride ion selective probe is made from acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ and potassium acetate $\left(\mathrm{CH}_{3} \mathrm{COOK}\right)$. The buffer needs to have total molarity of 1.0 M (including both acetic acid and potassium acetate) and have a pH of 5.22. The Ka of acetic acid is 1.8×10^{-5}.
a) (3 points) What are the initial concentrations of acetic acid and potassium acetate in the buffer?
$\left[\mathrm{A}^{-}\right]+[\mathrm{HA}]=1 \mathrm{M}$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left[\mathrm{A}^{-}\right]$ $\mathrm{x}+\mathrm{y}=1$
[HA]
$y=1-x$
$5.22=-\log \left(1.8 \times 10^{-5}\right)+\log [\mathrm{x}]$
[1-x]
$5.22=4.74+\log [\mathrm{x} /(1-\mathrm{x})]$
$0.48=\log [\mathrm{x} /(1-\mathrm{x})]$
$3.02=\mathrm{x} /(1-\mathrm{x})$
$3.02=4.02 \mathrm{x} ; \quad 0.75=\mathrm{x}$
$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=0.25 \quad\left[\mathrm{CH}_{3} \mathrm{COOK}\right]=0.75$
b) (1 point) If you have a 5.0 M solution of acetic acid, how many milliliters of this solution would you use in order to prepare 1.0 L of the buffer?
$5 \mathrm{M}\left(\mathrm{V}_{1}\right)=0.25 \mathrm{M}(1 \mathrm{~L})$
$\mathrm{V}_{1}=0.05 \mathrm{~L}=50 \mathrm{~mL}=5.0 \times 10^{1} \mathrm{~mL}$
c) (1 point) How much potassium acetate would you weigh out in order to prepare 1.0 L of the buffer?
$0.75 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOK}^{*}\left(98 \mathrm{~g} \mathrm{CH}_{3} \underline{\mathrm{COOK})}=74.25 \mathrm{~g}=74 \mathrm{~g} \mathrm{CH}_{3} \mathrm{COOK}\right.$
$1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOK}$
d) (1 point) Will the buffer have a higher buffering capacity for acid or for base? Please explain.

Acid; The buffer starts with more conjugate base $\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)$.

1	$\mathrm{H}^{1.00794}$		PERIODIC CHART OF THE ELEMENTS															He^{2} 4.00260 9 Ne^{10} 20.179
2	$\begin{gathered} \mathrm{Li}^{3} \\ 6.941 \end{gathered}$	${ }_{9.01218}{ }^{4}$											B^{5}	C^{6}	$\mathrm{N}^{7}{ }^{7}$	O^{8}		
3		$\mathrm{Mg}^{12}{ }^{12}$											Al^{13}	Si^{14}	P^{15}	S^{16}	$\begin{gathered} \mathrm{Cl}^{17} \\ 35.453 \end{gathered}$	Ar^{18}
4	K^{19}	$\begin{gathered} \mathrm{Ca}^{20} \\ 40.08 \end{gathered}$	$\begin{gathered} 21 \\ \mathrm{Sc} \\ 44.9559 \end{gathered}$	$\begin{array}{c\|} \hline 22 \\ 47.88 \\ \hline \end{array}$	V^{23}	Cr^{24}	$\begin{gathered} \mathrm{Mn}^{25} \\ 54.9380 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Fe}^{26} \\ 55.847 \end{gathered}$	Co^{27}	Ni^{28}	$\mathrm{Cu}_{63.546}^{29}$	$\begin{gathered} \mathrm{Zn}^{30} \\ 65.38 \end{gathered}$	$\mathrm{Ga}_{69.72}^{31}$	$\begin{aligned} & \mathrm{Ge}^{32} \\ & 72.59 \end{aligned}$	As^{33}	$\mathrm{Se}_{78.96}^{34}$	$\begin{gathered} \mathrm{Br}^{35} \\ 79.904 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Kr}^{36} \\ 83.80 \\ \hline \end{gathered}$
5	R^{37} 85.4678	Sr^{38}	$\begin{gathered} 39 \\ \mathrm{Y} \\ 88.9059 \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{Zr}^{40} \\ 91.22 \end{array}$	$\begin{gathered} \mathrm{Nb}^{41} \\ 92.9064 \end{gathered}$	$\begin{aligned} & \mathrm{Mo}^{42} \\ & 95.94 \end{aligned}$	$\begin{gathered} \mathrm{Tc}^{43} \\ (98) \end{gathered}$	$\begin{gathered} \mathrm{Ru}^{44} \\ \mathrm{Ru}^{2} .07 \end{gathered}$	Rh^{45}	$\mathrm{Pd}_{106.42}^{46}$		Cd^{48}	$\begin{gathered} \ln ^{49} \\ 114.82 \end{gathered}$	Sn^{50}	Sb^{51}	Te^{52}		$\begin{gathered} \mathrm{Xe}^{54} \\ 131.29 \end{gathered}$
6	$\begin{array}{\|c\|} \hline \mathrm{Cs}^{55} \\ 132.9054 \end{array}$	Ba^{56}	57 $58-71$ La 138.9055 AANTIDES	$\begin{array}{\|c} \hline \mathrm{Hf}^{72} \\ 178.49 \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{Ta}^{73} \\ 180.9479 \end{array}$	W^{74}	Re^{75}	$\begin{array}{\|c\|} \hline \mathrm{Os}^{76} \\ \hline 190.2 \\ \hline \end{array}$	$\underset{192.22}{\mathrm{Ir}^{77}}$	$\begin{array}{\|c} \mathrm{Pt}^{78} \\ 195.08 \end{array}$	${\underset{196.9665}{ }{ }^{79}}^{49}$	Hg^{80}	$\begin{gathered} \mathrm{Tl}^{81} \\ 204.383 \end{gathered}$	$\begin{aligned} & \mathrm{Pb}^{82} \\ & 207.2 \end{aligned}$	Bi^{83} 208.9804	$\begin{aligned} & \mathrm{Po}^{84} \\ & (209) \end{aligned}$	$\begin{gathered} \mathrm{At}^{85} \\ (210) \end{gathered}$	$\begin{aligned} & \mathrm{Rn}^{86} \\ & (222) \end{aligned}$
7	$\begin{gathered} \mathrm{Fr}^{87} \\ (223) \\ \hline \end{gathered}$	Ra^{88} 226.0254	89 90-103 Ac 207.0278 ACTIN- IDES	$\begin{gathered} \mathrm{R}^{104} \\ \mathrm{Rf} \\ (261) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 105 \\ \text { Db }^{102)} \\ \hline(262) \\ \hline \end{array}$	$\begin{gathered} 106 \\ \mathrm{Sg}_{(263)} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{Bh}^{107} \end{aligned}$	Hs^{108}	Mt^{109}	110	111	112						
			LANTHANIDE SERIES			Nd^{60}	$\begin{aligned} & \hline \mathrm{Pm}^{61} \\ & (145) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{Sm}^{62} \\ 150.36 \\ \hline \end{array}$	Eu^{63}		Tb^{65}	$\begin{gathered} { }^{66} \\ \mathrm{Dy}^{66} .50 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Ho}^{67} \\ 164.9304 \\ \hline \end{gathered}$	Er^{68}	$\begin{gathered} \mathrm{Tm}^{69} \\ 168.9342 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Yb}^{70} \\ 173.04 \end{gathered}$	$\begin{gathered} L u^{71} \\ 174.967 \\ \hline \end{gathered}$	
			ACTANIDE SERIES	$\begin{array}{\|c\|} \hline \mathrm{Th}^{90} \\ 232.03811 \\ \hline \end{array}$	$\begin{gathered} \mathrm{Pa}^{91} \\ \mathrm{~Pa}^{231.0359} \end{gathered}$	U^{92}		$\begin{gathered} \mathrm{Pu}^{94} \\ (244) \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \mathrm{Am}^{95} \\ (243) \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{Cm}^{96} \\ (247) \\ \hline \end{array}$	$\begin{gathered} \mathrm{Bk}^{97} \\ (247) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Cf}^{98} \\ (251) \end{gathered}$	$\begin{gathered} \mathrm{Es}^{99} \\ \hline(252) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{Fm}^{100} \\ & (257) \\ & \hline \end{aligned}$	$\begin{aligned} & M^{101} \\ & (258) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{No}_{(259)}^{102} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{Lr}^{103} \\ (260) \\ \hline \end{gathered}$	

